DE0021 Diferenciālvienādojumi

Kods DE0021
Nosaukums Diferenciālvienādojumi
Statuss Obligātais/Ierobežotās izvēles
Līmenis un tips Pamatstudiju, Profesionālais
Tematiskā joma Matemātika un statistika
Struktūrvienība Datorzinātnes, informācijas tehnoloģijas un enerģētikas fakultāte
Mācībspēks Evija Liepa-Hazeleja, Nataļja Budkina, Oksana Pavļenko
Kredītpunkti 4.0
Daļas 1
Anotācija Studiju kursā apskatīti pamatjautājumi par sekojošām tēmām no diferenciālvienādojumu teorijas: parastie diferenciālvienādojumi, atrisinājumu eksistence un unitāte, pirmās kārtas diferenciālvienādojumi (ar atdalāmiem mainīgajiem, homogēns vienādojums, eksaktais vienādojums, Bernulli vienādojums), lineārs vienādojums ar konstantiem koeficientiem, augstākās kārtas diferenciālvienādojumi, Ļapunova stabilitātes teorija, otrās kārtas diferenciālvienādojumu singulārie punkti, attēls. Studiju kursā izmantotie piemēri ilustrē aplūkoto jēdzienu un metožu pielietojumus ekonomikā, finansēs un citās ar specialitāti saistītas nozarēs..
Studiju kursa saturs
Saturs Pilna un nepilna laika klātienes studijas Nepilna laika neklātienes studijas
Kontaktstundas Patstāvīgais darbs Kontaktstundas Patstāvīgais darbs
Parastie diferenciālvienādojumi. Atrisinājumu eksistence un unitāte. 2 3 0 0
Pirmās kārtas diferenciālvienādojumi. Atrisinājumu atrašanas metodes. 14 16 0 0
Augstākas kārtas diferenciālvienādojumi 6 6 0 0
Lineārs vienādojums ar konstantiem koeficientiem. Risinājumu metodes. 8 10 0 0
Pirmās kārtas diferenciālvienādojumu sistēmas. 8 8 0 0
Nelineāri diferenciālvienādojumi. Līdzsvara asimptotiskā stabilitāte. 8 6 0 0
Otrās kārtas diferenciālvienādojumu singulārie punkti, attēls. 6 4 0 0
Eksāmens. 2 0 0 0
Kopā: 54 53 0 0
Mērķis un uzdevumi, izteikti
kompetencēs un prasmēs
Studiju kursa mērķis ir sniegt pamatzināšanas par metodēm un algoritmiem diferenciālvienādojumu risināšanā un analīzē, kas ir nepieciešamas specialitātes studiju kursu sekmīgai apgūšanai. Studiju kursa uzdevumi: 1. sniegt pamatzināšanas par parastajiem diferenciālvienādojumiem; 2. iepazīstināt studentus ar metodēm pirmās kārtas diferenciālvienādojumu sistēmu risināšanai; 3. iemācīt studentus analizēt nelineārus diferenciālvienādojumus grafiski un analītiski.
Sasniedzamie studiju
rezultāti un to vērtēšana
Spēj pieradīt diferenciālvienādojuma atrisinājumu eksistenci un unitātii. - Par minētajām tēmām studentiem paredzēti uzdevumi eksāmenā.
Spēj izmantot atrisinājumu atrašanas metodes: vienādojumiem ar atdalāmiem mainīgajiem, homogēniem vienādojumiem, eksāktiem un Bernulli vienādojumiem. - Par minētajām tēmām studentiem paredzēti uzdevumi pirmajā kontroldarbā un mājasdarbā.
Prot izmantot lineāru diferenciālvienādojumu ar konstantiem koeficientiem atrisinājumu atrašanas metodes. - Par minētajām tēmām studentiem paredzēti uzdevumi otrajā kontroldarbā un mājasdarbā.
Prot risināt pirmās kārtas diferenciālvienādojumu sistēmas ar divām metodēm. - Par minētajām tēmām studentiem paredzēti uzdevumi otrajā kontroldarbā, mājasdarbā un eksāmenā.
Zina Ļapunova stabilitātes teorijas pamatprincipus, spēj analizēt lineāra diferenciālvienādojuma ar konstantiem koeficientiem līdzsvara stabilitāti. - Par minētajām tēmām studentiem paredzēti uzdevumi eksāmenā, trešajā kontroldarbā un mājasdarbā.
Spēj analizēt otrās kārtas diferenciālvienādojumus ģeometriski. - Par minētajām tēmām studentiem paredzēti uzdevumi eksāmenā un trešajā kontroldarbā.
Studiju rezultātu vērtēšanas kritēriji
Kontroldarbi - 35%
Mājasdarbi - 15%
Eksāmens - 50%
 
Priekšzināšanas Augstākās matemātikas studiju kursa zināšanas.
Studiju kursa plānojums
Daļa KP Stundas Pārbaudījumi
Lekcijas Prakt. d. Lab. Ieskaite Eksāmens Darbs
1 4.0 34.0 20.0 0.0 *

Pieteikties uz šo kursu

[Kursa apraksts PDF formātā]