Code | DIP203 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Name | Data Structures | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Status | Compulsory/Courses of Limited Choice | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Level and type | Undergraduate Studies, Academic | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Field of study | Computer Science | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Faculty | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Academic staff | Aleksejs Jurenoks, Natālija Prokofjeva, Igors Ščukins, Lāsma Lēruma, Padmaraj Nidagundi, Valdis Saulespurēns, Inese Simkeviča | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Credit points | 3.0 (4.5 ECTS) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Parts | 1 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Annotation |
The study course provides the following information: data structure (DS) concept and classification, logical and physical data structures, DS creation methods and representation techniques. The study course covers linear data structures (arrays, lists, tables, stacks, rows, dequeues) and nonlinear data structures (trees, graphs), as well as describes several types of lists and trees, their specification, representation, creation and use.. |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Contents |
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Goals and objectives of the course in terms of competences and skills |
The aim of the study course is to provide knowledge and skills about data type and data structure (DS) specifications, data structure creation methods and representation techniques, and efficient algorithms for working with frequently used data structures. Tasks of the study course: - to acquaint students with the concept, meaning and classification principles of data structures, as well as the development and description of DS model, design and implementation; - to teach students to choose the most efficient DS and their processing algorithms and to use them in practice in the software development process. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning outcomes and assessment |
Is able to create data structures and implement their processing operations. - Independently performed and positively evaluated laboratory works. Is able to create various types of data structures, describe and implement the functions for their processing. - Independently performed and positively evaluated homework. Knows general questions about data structures, their representation models, specifications, and processing operations. - Completed and positively evaluated tests. Knows the concept, meaning and classification principles of data structures, as well as types and technologies for representing data structures. - Passed the exam with a positive grade. |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Evaluation criteria of study results |
Laboratory works - 30%
Homework - 20% Tests - 10% Exam - 40% |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Course prerequisites | Algorithmization and Programming of Solutions. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Course planning |
|