Code | DSP722 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Name | Multiagent Systems | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Status | Compulsory/Courses of Limited Choice | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Level and type | Post-graduate Studies, Academic | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Field of study | Computer Science | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Faculty | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Academic staff | Egons Lavendelis | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Credit points | 4.0 (6.0 ECTS) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Parts | 1 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Annotation |
One of developing directions of artificial intelligence is based on the intelligent agent paradigm. Its goal is to create systems that act rationally. Communities of agents form multiagent systems that form the basics of distributed intelligent computing. Autonomous robot systems are important application of such systems. The course considers the main topics of multiagent systems and methodologies of their development. Main emphasis is on social capabilities of agents, like multiagent interaction, communication and cooperation. The course gives an overview of applications of multiagent systems and an insight in implementation of robotics as multiagent systems.. |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Contents |
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Goals and objectives of the course in terms of competences and skills |
The goal of the course is to give basic knowledge and to acquire skills how to evaluate and choose appropriate methodology and methods for the design and development of robotic multiagent system. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning outcomes and assessment |
Students are able to determine utilities, preferences and dominant strategies - Questions of the theoretical part of examination Students are able to use interaction and negotiation protocols in multiagent systems and to choose appropriate protocols, including the most appropriate auctions - Practical work, defence of course work, questions of the theoretical part of examination Students have a good knowledge of agent communication languages - Practical work, defence of course work Students are able to create a multiagent system for cooperative work - Practical work, defence of course work, questions of the theoretical part of examination Students have knowledge about agent oriented software engineering and concepts used in it - Practical work, defence of course work, questions of the theoretical part of examination Students are able to evaluate and to choose suitable methodology for the development of multiagent system - Practical work, defence of course work, questions of the theoretical part of examination Students are able to design multliagent systems, including robotic multiagent systems - Practical work, defence of course work, questions of the theoretical part of examination Students have good knowledge about possible applications of multiagent systems. They will be capable to evaluate appropriateness of multiagent systems in various application domains - Practical work, defence of course work, questions of the theoretical part of examination |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Evaluation criteria of study results |
Examination - 50%
Course work - 30% Practical works - 20% |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Course prerequisites | Students must know algorithms used in artificial intelligence, like uninformed and informed search. They should be familiar with knowledge representation schemas such as first order logic, production rules, semantic networks, conceptual graphs and frames. Basic notions of intelligent agents, agent characteristics and environments, should be known as well. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Course planning |
|